0=300-4.9(t)^2

Simple and best practice solution for 0=300-4.9(t)^2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=300-4.9(t)^2 equation:



0=300-4.9(t)^2
We move all terms to the left:
0-(300-4.9(t)^2)=0
We add all the numbers together, and all the variables
-(300-4.9t^2)=0
We get rid of parentheses
4.9t^2-300=0
a = 4.9; b = 0; c = -300;
Δ = b2-4ac
Δ = 02-4·4.9·(-300)
Δ = 5880
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5880}=\sqrt{196*30}=\sqrt{196}*\sqrt{30}=14\sqrt{30}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{30}}{2*4.9}=\frac{0-14\sqrt{30}}{9.8} =-\frac{14\sqrt{30}}{9.8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{30}}{2*4.9}=\frac{0+14\sqrt{30}}{9.8} =\frac{14\sqrt{30}}{9.8} $

See similar equations:

| -3x-2(-2x-8)=16+x | | 300=300-4.9t^2 | | 3x2-15x+21=0 | | (2x+20)=-2x-22 | | -6n-+8n=-10-n+5n | | v-962/6=6 | | 2(2x+20)=-44 | | -85=-2x-3(-2x+15) | | x/300=0.75 | | 24y+3=30 | | -42m=4300 | | 13x+1=5+6x-4 | | 1.2n-1.5=0.45n | | -x+19=5x-17 | | 7x-10x=2x-10 | | k-949/5=6 | | -(24y-8)=30 | | _3(4x+9=21 | | 7x+18=-3x-12 | | 30,000=0.2x=80,000 | | 9g=7+3+6 | | 53=f−8 | | 8(w-815)=608 | | 5x+1=3x-47 | | 12-3(-2x+3)=2x+4x | | 608=8(w−815) | | 3u-10=2 | | j=35÷5 | | 23(n+7)=437 | | 40÷4=m | | f+24=92 | | X^2-6x-91=-8 |

Equations solver categories